Markets and Trends January 20, 2026 1 min

IDC FutureScape 2026十大预测:当智能体走进开发流程,DevOps 正在被重新定义

一个正在发生的变化软件不再只是人写的

在过去二十年里,软件工程的核心始终围绕“人如何写代码、交付系统”展开。即便进入 DevOps 时代,自动化更多也只是加快了既有流程。但 IDC 指出,随着 Agentic AI 的成熟,软件开发正在发生一次结构性转变:开发不再完全由人主导执行,而是由人类开发者与自主 AI 智能体协作完成。

在《IDC FutureScape:全球开发者和 DevOps 2026 年预测——中国启示》(Doc# CHC54059126

,2026年1月)中,IDC 明确提出:未来五年,Agentic AI 将深度嵌入从开发、测试到运维和安全的整个生命周期,迫使 DevOps 从“工具链升级”走向“运行模式重构”。

IDC 的核心洞察:DevOps 的问题,已经不只是效率

在中国市场,许多企业仍将 DevOps 视为提升交付速度、降低沟通成本的方法。但 IDC 认为,这种理解正在失效。
当 AI 智能体开始自动生成代码、执行测试、修复缺陷并参与决策,真正的挑战不再是“怎么用工具”,而是:

  • 谁来管理和监督智能体?
  • 如何保证 Agent 的行为可解释、可审计?
  • 人类开发者的角色将如何转型?
  • 企业是否具备规模化运行智能体的治理与平台能力?

这些问题,正是 FutureScape 2026 十大预测试图回答的核心。

十大预测:Agentic AI 将如何重塑开发者与 DevOps 生态

预测 1|智能体开发采用

到 2028 年,面对智能体部署量增长 10 倍的局面,50% 的中国 1000 强企业将采用智能体开发生命周期,以实现企业级智能体 AI 的有效规模化落地。

这意味着,传统 SDLC 已不足以支撑智能体开发,企业必须引入专门面向 Agent 的开发与治理方法论。

预测 2|多智能体编排

到 2029 年,多智能体编排的风险与复杂性将促使企业强化战略布局、扩充卓越中心(COE)资源,并将 AI 治理与监控工具的支出增加 30%。

当单一 Agent 变成 Agent 集群,治理与可见性将成为规模化落地的前提。

预测 3|自主式智能体 AI 工作单元

到 2030 年,80% 的开发者将与自主 AI 智能体展开协作,推动人类开发者向规划、设计与编排角色转型,并重塑开发者工具生态系统。

开发者将不再只是“写代码的人”,而是“引导和监督智能体的人”。

预测 4|氛围编程采用

到 2027 年,随着企业级能力的成熟,35% 的专业开发者将采用氛围编程开发平台构建生产级应用。

自然语言正在成为新的开发接口,但前提是企业级治理与质量控制能力同步成熟。

预测 5|嵌入 DevOps 的智能体应用

到 2030 年,65% 的企业将把 AI 智能体嵌入 DevOps 和 DevSecOps 流水线,用于执行开发与安全工作流。

Agent 将成为流水线中的“常驻成员”,而非外部插件。

预测 6|前沿模型采用

到 2027 年,在开发者偏好的驱动下,70% 的 AI 用例将仅由少数几个前沿模型提供支持。

模型选择正在从“多而杂”走向“少而精”。

预测 7|智能体 AI 项目失败

到 2028 年,70% 的“自建型”智能体 AI 项目将因未能达成投资回报率目标而被放弃。

低估治理、运维和组织成本,是失败的主要原因。

预测 8AI 质量保障扩展

到 2028 年,AI 质量保障将推动智能体测试和跨应用生命周期管理的采用率至少提升 30%。

没有质量保障的 Agentic DevOps,无法进入生产核心。

预测 9AI 加速应用开发

到 2029 年,通过使用智能体 AI 软件开发工具,企业的应用开发与现代化迭代速度将提升 400%。

速度跃迁的前提,是平台化与治理并行。

预测 10|开发者模型微调

到 2027 年,微调将取代检索增强生成(RAG)成为大语言模型改造的主流模式,这将推动开发者对开源权重模型的使用率提升 80%。

模型工程正在走向更深度的定制化。

分析师观点

IDC 中国研究经理王彦翔认为,开发者和 DevOps 正站在从“自动化时代”迈向“智能体时代”的关键门槛。FutureScape 2026 显示,真正拉开差距的,不是是否引入 AI 编码工具,而是企业是否具备平台工程、治理能力和开发者角色转型的整体规划。那些仅在局部场景试点智能体的组织,将很难释放规模化价值;而将 Agentic AI 作为企业级能力来建设的组织,更有可能在速度、质量和创新能力上形成长期优势。

一个面向技术与业务领导者的综合建议

IDC 并不建议企业急于“全面智能体化”。更重要的是,以 DevOps 为核心,系统性重构开发流程、平台能力与治理机制:建立智能体开发生命周期(ADLC)、强化多智能体编排与监控、同步推进开发者技能转型,并将 AI 治理嵌入每一个交付环节。


只有这样,Agentic AI 才能成为持续创新的引擎,而不是新的技术债务来源。

行动指南:企业可以从哪里开始?

  • 从 高价值、低风险的开发或运维场景 切入,验证 Agent 的实际收益
  • 建立 跨职能的 AI / Agent 卓越中心(COE),统一治理与平台策略
  • 投资 平台工程与 AI 质量保障,而不仅是开发工具
  • 提前规划 开发者角色与能力转型,为人机协作做好准备

如需进一步了解与研究相关内容或咨询 IDC其他相关研究,请点击此处与我们联系。

Bryan Wang - Senior Market Analyst - IDC

Bryan Wang is a senior market analyst for Cloud Computing in the Emerging Technology sector for IDC China. He focuses on research and analysis of China's cloud computing market, including infrastructure as a service (IaaS), platform as a service (PaaS), and software as a service (SAAS). Bryan is also responsible for providing market analysis and research in relevant fields together with IDC's regional and global research teams. Before joining IDC, Bryan worked as a cloud computing solution architect for well-known manufacturers and systems integrators. He was mainly responsible for presales consulting, project design, industry insight, project management, and other work. He has rich experience and a profound understanding of the cloud computing field. Bryan graduated with a B.A. in Inorganic Nonmetallic Materials Engineering from Central South University.

Subscribe to our blog

Growing a business takes hard work and dedication. We’re here to help.
Find out how our unique solutions for emerging tech vendors can support your goals.

Subscribe now