数据不再仅仅是人工智能的输入,而是企业智能的基石。
一个正在到来的“数据重构”拐点
随着AI Agent从概念走向实际部署,数据正在经历一场根本性的角色转变。对中国企业而言,问题已不再是“是否拥有数据”,而是:现有的数据架构、治理方式和组织能力,是否足以支撑Agent的实时决策、自主行动与持续智能。
为什么这份FutureScape,对数据负责人尤为关键
在《IDC FutureScape:全球数据与分析2026年预测——中国启示》(Doc#53780325,2025年12月)中,IDC清晰指出:数据不再只是AI的输入,而是企业智能的基石。
报告预测,从2026年开始,中国企业的数据平台将从集中式、以供给为中心的模式,转向联合治理、实时访问和持续可观测的新范式。这一变化,直接决定了AI Agent能否从PoC顺利走向生产环境,以及企业是否能够在合规、信任与效率之间取得平衡。
读懂这十个预测,才能理解“AI in Data”的真正含义
IDC FutureScape 数据与分析 2026 并不是一份技术路线图,而是一张企业未来三到五年数据能力演进的风险地图。以下十个预测,刻画了Agent时代对数据平台、治理、架构与组织提出的真实要求。
预测1|数据和AI联合治理
到2027年,80%的AI Agent将需要访问实时、与上下文相关的数据,这将让中国500强企业的大部分CIO/CTO将数据平台从单向的数据供给转向联合治理。
要点:Agent时代需要去中心化访问,而非集中式“数据上缴”。
预测2|融合工作负载
到2028年,60%的企业数据平台将搭建HTAP架构来统一事务处理和分析工作负载,从而为AI Agent提供支持,实现实时数据访问和持续智能。
要点:实时决策正在倒逼事务与分析的融合。
预测3|数据协作
到2029年,60%的企业将通过私有数据交换、可信数据空间、数据联邦的方式进行数据协作,应用于生成式AI和Agent在内的各种用例。
要点:安全、受控的数据协作将成为AI规模化的前提。
预测4|合成数据
到2027年,不断完善的数据和隐私保护规则将使得30%的企业依靠合成数据来支持AI,以防止敏感和机密数据泄露。
要点:合规压力正在推动数据形态的转变。
预测5|数据重拾
到2028年,超过40%的归档数据将被重新识别为“战略性数据”,因为AI将揭示其潜在的商业价值。
要点:冷数据正在被重新定义为潜在资本。
预测6|数据可观测
到2027年,实现端到端数据价值链的可观测,包括数据和应用程序工作流程的透明,将使AI应用从PoC到生产的成功率提高50%。
要点:没有可观测性,就没有可复制的AI成功。
预测7|自动数据访问
到2029年,Agent的增长将使得50%的CIO去重新组织并自动化身份认证和数据访问及授权管理,以减少信息滥用和泄露,将其作为零信任架构的一部分。
要点:Agent数量增长,迫使身份与访问管理自动化。
预测8|实时数据
到2026年,中国500强企业中将有40%采用流式数据技术和物化视图来满足Agent中实时数据处理需求。
要点:事件驱动成为Agent响应世界的基础。
预测9|Data Agent
到2028年,60%的中国500强企业将部署企业级Data Agent,实现动态数据处理、数据管理、数据治理以及追踪。
要点:数据管理开始“自主化”。
预测10|Agentic Insight
到2026年,50%的中国500强企业将部署数据分析Agent来自动化日常任务,使人们能够参与创新和高级分析,并更快进行战略决策。
要点:分析Agent将把洞察嵌入业务流程本身。
这些预测在提醒企业什么?
IDC FutureScape 数据与分析 2026 反复强调一个核心事实:Agent的成功,不取决于模型能力,而取决于数据是否“随时可用、始终可信、持续可控”。如果数据仍然是批处理、割裂治理、低可见性的资产,那么Agent只能停留在演示层;只有完成数据架构、治理和访问方式的系统性重构,AI才能真正走向生产。
不同角色,如何理解这些变化?
- CIO / CTO:数据平台职责从“存储与供给”转向“联合访问与治理协调”
- CISO:身份、访问与数据安全必须自动化,才能支撑Agent规模化
- 数据负责人:数据产品化、可观测性和实时能力成为核心指标
- 业务负责人:数据不再只是支持分析,而是直接驱动决策与行动
IDC 中国高级分析师李浩然认为,Agent 的规模化部署正在迫使企业重新定义“数据”的角色:数据不再只是被动供给 AI 的原材料,而是必须以实时性、上下文相关性、可治理性和可观测性为前提,主动支撑智能体的持续决策与行动能力。FutureScape 2026 显示,真正限制 Agent 从 PoC 走向生产的,并非模型成熟度,而是企业是否完成了从集中式数据供给,到联合治理、事件驱动和自动化数据访问的体系性转型。那些能够将数据架构、治理、安全与业务流程协同重构的组织,将更有可能把 Agent 转化为可复制、可扩展的企业级能力;而忽视这一转型的企业,即便引入先进模型,也难以释放 AI 的长期商业价值。
IDC建议:
- 评估现有数据平台是否支持联合访问与实时数据
- 在关键用例中试点HTAP或事件驱动架构
- 将数据治理、隐私与安全嵌入Agent设计之初
- 建立端到端数据价值链的可观测能力
- 为Data Agent和分析Agent规划清晰的治理与KPI
接下来12–24个月,值得持续关注的信号
- 数据可信空间与私有数据交换的落地速度
- 合成数据相关政策与技术成熟度
- Data Agent从工具走向平台的演进路径
如需进一步了解与研究相关内容或咨询 IDC其他相关研究,请点击此处与我们联系。