Markets and Trends February 4, 2026 1 min

AI走向规模化,企业应用、服务与数据正在被重新审视

过去一年,生成式AI迅速从“前沿技术”演变为企业讨论中的常规议题。从董事会到业务一线,关注点已经不再是“要不要用AI”,而是企业在不同发展阶段,应该如何选择落地路径、如何判断投入节奏,以及如何尽量降低不必要的试错成本。

从市场实践来看,企业的AI探索并不存在统一范式:有的企业从具体应用场景切入,有的优先推动流程自动化,也有企业选择先夯实数据和平台基础。这些选择背后,往往与行业属性、组织能力、数字化成熟度和管理目标密切相关,并不存在绝对正确的先后顺序。

在这一过程中,企业级应用、企业级服务以及数据库与数据管理,往往以不同形式、不同权重出现在企业的AI实践中。IDC开展相关研究,并非试图将这些因素“硬性绑定”为成功前提,而是希望更真实地反映市场的复杂性,帮助企业理解不同路径下可能面临的机会与约束。

AI功能AI做事:企业级应用的重构正在发生

AI Agent正在改变企业应用的基本形态

在很多企业中,生成式AI最初的落地方式是“功能叠加”:写文案、生成报表、自动摘要。这类能力提升了效率,但并没有改变应用的本质。

IDC的研究发现,真正具有颠覆意义的变化来自AI Agent(智能体)的引入。企业级应用正在经历从“被动工具”到“主动参与业务执行”的转变:

  • 应用不再只是被人操作,而是能够理解目标、拆解任务并自动执行
  • 用户界面逐渐从复杂菜单,转向自然语言和流程驱动
  • 应用之间开始通过Agent进行协同,而非人工串联

IDC将这一变化总结为企业级应用的“Agentic演进路径”,并指出未来几年内,Agent将从辅助角色逐步走向主导角色。

哪些业务场景最先受益?

从企业实际落地情况来看,生成式AI和智能体的应用并未集中在单一部门,而是优先出现在高频交互、高度标准化或知识密集型的业务与技术场景中,包括:

  • 客户服务与智能联络中心:AI被广泛用于自动应答、坐席辅助、工单分流与服务质量监控,在不完全替代人工的前提下,提高响应效率和服务一致性。
  • 办公自动化与知识管理:会议纪要、文档整理、企业知识问答等场景逐步由AI承担基础工作,降低员工获取信息和跨部门协作的成本。
  • 内容生成与市场营销:从内容和素材生成,延伸至客户洞察、活动优化和线索管理,营销决策开始更多依赖数据与模型驱动。
  • 职能流程自动化:在财务、供应链、HR、采购、法务等职能领域,AI被用于规则明确、重复性高的流程自动化、合规检查和风险识别。
  • 研发与IT运维:代码生成、测试、故障定位和运维自动化成为AI落地的重要方向,直接影响研发效率、系统稳定性和运维成本。

IDC之所以持续追踪这些细分场景,是因为企业在做AI投资决策时,往往需要回答一个现实问题:哪些应用场景已经具备规模化条件,哪些仍处在早期探索阶段。这类研究的价值,在于帮助企业避免“平均用力”,而是将有限资源投入到最有可能产生业务回报的方向。

没有服务能力,AI很难真正跑起来

一个在客户中反复出现的共识是:AI Agent的成败,不仅仅是模型本身,很大程度还取决于项目实施过程中对于数据治理,安全合规,流程重塑,平台整合等环节的设计和把控,以及后期的运营和维护

企业在推进过程中普遍会遇到:

  • 业务流程是否适合被Agent接管
  • 多个Agent如何协同、治理和监控
  • 如何持续评估ROI,而不是一次性交付

这也是为什么企业级服务在AI时代的重要性被显著放大。IDC在软件与服务研究中,将AI咨询、Agent设计与开发、系统集成、运维与持续优化视为一个完整闭环,而非单一项目 。

对企业而言,这类研究的价值并不仅在于“推荐某一家供应商”,而在于帮助管理层理解能力建设的先后顺序:哪些能力需要长期内生,哪些可以借助生态伙伴补齐,从而避免“试点成功、规模失败”的常见陷阱。

AI走得多远,取决于数据和数据库走得多稳

数据库正在从后台系统走向“AI基础设施

如果说企业级应用决定了AI“做什么”,那么数据库和数据管理决定的则是AI“能不能做、做得好不好”。

在生成式AI快速演进的同时,中国数据库市场也正在经历深刻变化:一方面,AI对数据实时性、多模态和向量能力提出更高要求;另一方面,国产化进程推动本土数据库厂商在功能和市场份额上持续提升 。

AI for Data:让数据库更智能

IDC在数据库研究中发现,AI正在反向赋能数据库自身:

  • 自动调优与容量预测
  • 基于AI的异常检测和安全防护
  • 更智能的运维和资源调度

这些能力直接降低了数据库复杂度,使企业能够用更少的人力支撑更复杂的业务和AI负载。

Data for AI:让AI真正可用

更关键的是,数据库正在成为AI应用的“能力上限”:

  • 向量引擎和多模数据管理决定了Agent是否具备“长期记忆”和上下文理解能力
  • 数据治理和权限体系决定了AI是否可信、可控
  • 实时数据能力决定了AI是否能够参与业务决策,而不仅是事后分析

IDC在数据库管理系统市场的研究中强调:未来企业AI竞争的本质,是数据架构和数据能力的竞争

为什么IDC要持续开展这些研究?

IDC之所以持续在企业级应用、企业级服务以及数据库与数据管理领域投入研究,一方面,这些领域是企业AI价值真正发生的位置:应用决定AI是否进入业务流程,服务决定AI能否规模化运行,数据库管理和数据治理决定AI是否长期可持续。任何一环缺失,AI都很难从“亮点项目”走向“稳定能力”。

从企业决策者视角看,这些研究真正解决了什么问题?

通过持续的市场数据、趋势判断和实践洞察,IDC希望帮助客户:

  • 看清AI技术和应用的成熟节奏
  • 了解行业发展的最新趋势和最佳案例
  • 对于热点领域和技术的评估和参考实践

在生成式AI引领的新一轮技术升级中,真正具备长期优势的企业,往往不是最早“尝鲜”的企业,而是那些能够构建高质量数据资产、完善AI治理体系、深度重塑业务流程并持续融合行业Know-how,实现数据驱动的敏捷创新与可持续落地的企业这正是IDC持续开展相关研究的出发点,也是客户能够从这些研究中获得的长期价值。

IDC 2026年软件和服务领域研究计划:

如需进一步了解与研究相关内容或咨询 IDC其他相关研究,请点击此处与我们联系。

Lizzie Li - Associate Research Director - IDC

Lizzie Li is Associate Research Director of IDC China's Enterprise System and Software Research that focuses on research and analysis of the China Datacenter, Cloud Computing, and IT infrastructure markets. She also provides intelligence and consulting services in customized projects for local and multinational corporation (MNCs) IT vendors. Lizzie’s research domain covers Datacenters, Cloud Computing, Virtualization, and her duties include providing consulting proposals to IT vendors on sales, marketing, and research fields. Lizzie Li has seven years of experience in the IT industry, including Internet datacenters, cloud computing services, mobile telecommunication systems, and enterprise markets. Prior to joining IDC, Lizzie Li worked for 21vianet, Nokia Siemens Networks, and Huawei, and was responsible for sales analysis, project management, and technical support. Lizzie graduated from Huazhong University of Science and Technology with a Master’s degree in Pattern Recognition and Intelligent Systems.

Subscribe to our blog

Growing a business takes hard work and dedication. We’re here to help.
Find out how our unique solutions for emerging tech vendors can support your goals.

Subscribe now